962 research outputs found

    A finite element based optimal vibration suppression for constrained layer damped rotating plates

    Get PDF
    This paper investigates the vibration and optimal design of a rotating constrained layer damped plate system. Most of the existing researches treat the plate structures as beams. This work, however, models rotating structures as plates. At the same time, the existing research shows that the constrained layer damping (CLD) is an effective technique for vibration suppressions. Through the models investigated, this paper develops a single layer plate finite element model for a constrained layer damped rotating plate to improve both the accuracy and versatility over previous beam CLD models. Due to the multiple design variables and complex responses, a genetic algorithm (GA) is applied to determine the thicknesses of the viscoelastic damping layer and the constraining layer so that the amplitudes with first two modes of the driving point mobility at a selected point of the rotating plate can be minimized. Numerical results show that GA works effectively with developed single layer plate finite element model to find out the optimum configuration

    Design of a denoising hybrid fuzzy-pid controller for active suspension systems of heavy vehicles based on model adaptive wheelbase preview strategy

    Get PDF
    Active suspension is an effective approach to improve vehicle performance, and it is of great importance to attenuate the vibration of the rear part of heavy vehicles with freight. This paper proposes a new hybrid fuzzy proportional-integral-derivative (PID) controller with model adaptive wheelbase preview and wavelet denoising filter in an active suspension system for heavy vehicles with freight. A half vehicle model is first built, followed with the construction of the road excitation profiles of the shock and vibration pavement. After the design and implementation of the control method, four performance indices of the vehicle are evaluated. To verify the effectiveness of the proposed method, the control performance of the integrated controller and the separate function of every single controller are evaluated respectively. Numerical results show that the integrated control algorithm is superior to the single controllers and is effective in improving the vehicle performance as compared with other methods. Moreover, the wavelet denoising filter is shown to be an effective way to improve the vehicle performance and enable the stability of the system against noise

    A numerical investigation on active engine mounting systems and its optimization

    Get PDF
    In this paper, based on the previous research experiences in the lumped parameter modeling and study of active control mounts (ACM) model, an analytical model of active ACM in powertrain is developed and implemented in MATLAB. In order to validate this newly developed model in this work, a finite element analysis (FEA) method is conducted in ANSYS and the results of FEA is compared with analytical model for validation. After the validation, the control strategy is integrated into the analytical model by using the linear quadratic regulator (LQR) method. Numerical results show a good control performance. Furthermore, this work examines the application of genetic algorithms (GA) in optimizing the weight matrices of LQR. An optimal configuration is obtained and thus this approach could help the practical design of ACM systems

    Modeling of RFID-Enabled Real-Time Manufacturing Execution System in Mixed-Model Assembly Lines

    Get PDF
    To quickly respond to the diverse product demands, mixed-model assembly lines are well adopted in discrete manufacturing industries. Besides the complexity in material distribution, mixed-model assembly involves a variety of components, different process plans and fast production changes, which greatly increase the difficulty for agile production management. Aiming at breaking through the bottlenecks in existing production management, a novel RFID-enabled manufacturing execution system (MES), which is featured with real-time and wireless information interaction capability, is proposed to identify various manufacturing objects including WIPs, tools, and operators, etc., and to trace their movements throughout the production processes. However, being subject to the constraints in terms of safety stock, machine assignment, setup, and scheduling requirements, the optimization of RFID-enabled MES model for production planning and scheduling issues is a NP-hard problem. A new heuristical generalized Lagrangian decomposition approach has been proposed for model optimization, which decomposes the model into three subproblems: computation of optimal configuration of RFID senor networks, optimization of production planning subjected to machine setup cost and safety stock constraints, and optimization of scheduling for minimized overtime. RFID signal processing methods that could solve unreliable, redundant, and missing tag events are also described in detail. The model validity is discussed through algorithm analysis and verified through numerical simulation. The proposed design scheme has important reference value for the applications of RFID in multiple manufacturing fields, and also lays a vital research foundation to leverage digital and networked manufacturing system towards intelligence

    Apparatus and methods for manipulation and optimization of biological systems

    Get PDF
    The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems

    Apparatus and Methods for Manipulation and Optimization of Biological Systems

    Get PDF
    The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems

    System Integration - A Major Step toward Lab on a Chip

    Get PDF
    Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications

    Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Get PDF
    Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda) among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM), to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC) algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN) and decremental least-squares support vector machine (DLSSVM). Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC) is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI) controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control

    Numerical Modeling and Control of Rotating Plate with Coupled Self-Sensing and Frequency-Dependent Active Constrained Layer Damping

    Get PDF
    This work proposes a coupled finite element model for actively controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain analyses. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model the viscoelastic material, but it limits to frequency domain analysis and the frequency dependency of the viscoelastic material is not well-included as well. It is meaningful use of the anelastic displacement fields (ADFs) that is done in order to include the frequency dependency of the material for both the time and frequency domains. Also, unlike previous ones, all types of damping are taken into account by this finite element model. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator. This newly proposed finite element model is validated, and then, as shown in numerical studies, this proposed approach can achieve effective vibration reduction in both the frequency and time domains
    corecore